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NOTATION

a One half the average molecular speed

c Velocity vector of molecules relative to U

c~, Specific heat at cons tant pressure

Cv Specific hea t at cons tant volume

e Internal ener gy per unit mass

F Body force per unit mas s potential

I Idem factor , I = ii + j j  + kk

Outwar d d rawn unit vec tor normal to the surface
element dS

p Static pressure

0 Ener gy flux vec tor

q Heat addition rate per unit mass

R Universal gas cons tant d ivided by molecular weight

S Closed surface bounding V

SQR( ) Square root of the quantity in parenthesis

t Vector tangent to the surface element dS

T Absolute static temperature

13 Flow velocity vec tor

V Ar bitrary volume

X Flow proper ty value at the surface element asso-
ciated with those molecules going out of V

Y Flow proper ty value at the surface element
associated with those molecules going into V

A Average distance of molecular collisions from the
surface elemen t, two—thirds of the mean free path

u Viscosi ty

3.14159
4
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p Density, mass per unit volume

T Average transi t time of molecules from collision
point to the surface element, t =

Special Symbols

~( ) Partial time derivative of quantity in parenthesis

)‘ Prope rty of molecules moving out of V through
the surface element

) “  Property of molecules moving into V through
the surface element

( 
~c 

Conjugate of (

*
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ABSTRACT

Start ing with the fric tionless flow
equations , governing equations for viscous
compressible flow are developed from a phys-
ical molecular transpor t model by forming a
firs t per tur bation of the average flow prop-
er ty value transpor ted across a surface ele-
men t by two distinct groups of molecules.
This results in a continuity equat ion with
viscous correction terms .

ADMINISTRATIVE INFORMATION

This investigation was authorized and funded by the

Naval Air Systems Command (AIR—320D) under Project Element

62241N , WF 41.421.091, Work Unit 1—1600—078,_ and was accom-

plished during the months of April , May, and June 1978.

INTRODUCTION

The fric tionless f low equat ions may be wri tten in terms

of a volume integral equal to a surface integral , where the

surface integra l integ rand accoun ts for flow of some physical

property across a surface element. The molecules crossing the

surface element fall into two groups , those wi th a component

of relative velocity in the same direction as the surface

elemen t unit vec tor ~ and those with a component opposite to

~~ . By applying the simple physical molecular model in which

some average flow property is transported from the last aver-

age collision point across the surface element to these two

• distinct groups of molecules , correction terms are obtained

for the frictionless flow continuity equation as well as

1
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correc tion terms for the momentum and energy equations.

The correction terms for the continuity equation are found

to be essential for the solution of certain physical

problems.

DEVELOPMENT

The fr ic tionless flow equations may be wri tten using

dyad ic and vec tor notation in terms of volume and surface

integrals l*

f  a (p)dV = — f  ii .(pU)dS (1)

f  [~~(p~i ) p VF1dV = — f  ii.(p ?J~i+piii~)dS (2)

f  [~~(pe+pU.ii/2—p F)—pq]dV

= — f  n.(pe+pU.IJ/2—PF+p )UdS (3)
p

where ~( )  denotes the partial derivative with respect to

t ime , V F is the body force per unit mas s due to the potential

F, and —F is the potential energy per unit mass. These equa-

tions neg lec t molecular transpor t ef fec ts so there is no

viscosity or thermal conductivity . Thus , in a volume elemen t

containing the surface element i~dS , the molecular veloc ity

distribution is locally Maxwellian. Then , half of the

*A complete listing of references is given on page 17.
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molecules wi th density p t will have velocity c ’ relative

to ii so that

~ 0 (4)

and the remaining molecules with density p” will have

< 0 (5)

Then for Equation (1)

pU = p t (U+an) + p” (U—aTh (6)

identifies the two groups of molecules crossing ~dS , P’ from

inside V going out and p” from outside V going in , where

p 1 = p” = P12 (7)

and

a = SQR(2RT/T) (8)

In Equation (8), a is found to be one—half the average

molecular speed from Icinetic gas theory,2 R is the universal

gas constant divided by the molecular weight , and T is the

absolu te static temperature.

Using p = pRT in Equation (2)

(pUU+pnn ) = (pUU+pRTnn )

= [p ’ (U+a~ )(U+ai~)+p ” (U—a ~ )(U—a~ )J (9a)

identifies the two groups of molecules crossing ~dS and the

velocity associated with each group, where it is understood

3
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that paa must be multiplied by Tr/2 when it occurs to

account for root mean square averaging and obtain the pRT

term. Expanding Equation (9a) and using the idem factor 3 I
to replace ~i, because ~~~~ = i~.I = i~, one finds

(p UU+pfln) = p ’(UU+anU+aUn+RTI)

+ p ”(~iU—anU—aUn+RTI) (9b)

Using p = pRT, e = c
~
T, and c~ = R + c

~ 
in Equation (3)

p(c~T+U’U/2—F)tJ = p ’(c~T+1J.U/2—F)(U+an)

+ p ”(c~T+U.U/2—F) (U—an) (10)

identifies the two groups of molecules crossing i~dS and the

energy associated with each group.

To form the per tur bation , assume some average flow prop-

er ty value , e.g., X’ , is acquired by the p t molecules a t the ir

last average collision point before crossing ndS.

Then , if x is the average flow property at the surface element

X ’ = X — (A/a)(U+an).V (X) (h a)

is the average flow property value acquired by the p t mole—

cules and transported across the surface element, where A

is the average distance of the collision point from dS when

= 0. Also , A is two—thirds of the mean free path. The

ra tio (A/a) is an average characteristic time , e.g., 1,

4 



between molecular collisions and passa ge of the molecules

through dS. Thus , Equation (ila ) may also be wri tten

X I  = X — T (U+an).VX (llb)

Similarly , if Y” is an average flow property value of the pU

molecules

Yl ’ = Y + T(an—U).VY (12)

The time averag ing of molecular motion in a volume ele-

ment provides the basis for the perturbation model and this

process should be examined briefly. At standard conditions

there are approximately 2.7 x 1019 molecules in a cubic centi-

meter of gas. The dimension of A is approximately 4.3 x io 6

cm and a is approximately 2.2 x IO~ cm/s , hence, T = 2 x 10—10

seconds. Then, as the molecules enter and leave a cubic vol-

ume element of dimension 2 A , there will be approximately

6 x 8.6 x 8.6 x 2.2 x 2.7 x 10 ’’ = 2.6 x io14 discrete values

of a particular frictionless flow property (p,U,p,etc.) per

second . If the macroscopic time element associated with the

flow properties in the frictionless flow equations is taken

as one microsecond , then during that time element there will

be approximately 2.6 x 108 d iscre te values o f the f ric tionles s

flow proper ty that form the average value associa ted wi th

the location of the cubic volume elemen t at that par ticular

time . During this microsecond , approximately 2.2 x iO~ mole—

cules will enter a side of the cub ic vo lume elemen t and

I ’
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penetrate to its center; thus transporting their flow property

value acro ss a sur face elemen t a t the cen ter of the volume
A

element ., The flow property value transported across the sur-

face element by these penetrating molecules may be different

from the average frictionless flow property value of the volume

element , which is macroscopically flowing through the surface

element. The perturbation model attempts to account for this

difference. To be consistent , the perturbation model will

be applied to the surface element flux of all three friction—

less flow equations.

Substituting Equations (6), (llb), and (12) in Equation

(1) forms the continuity perturbation ,

r ~3(p )dV = — f  ~~~~~~~~~~~~~~~~~~~~~ $

—T(U+an).V( p ’U+ p ’an)+T (arl—U ).V (p” U—p ”a n) ] d S

= — I i~.[ —TiJ .V (pU)—Taii .V(pai~ ) ] d S  ( 13 a )

where X = p ’(U+ari ) and Y = p ” (tJ—an) has been used.

E x p a n d i n g  the  l a s t  t e rm of E q u a t i o n  ( 13 a)  one o b t a i n s  a com-

ponent n.(n.Vn). The derivative ~~~~~ will be a vector t

which is t a n g e n t  to dS.  Thus , . (Fi.V i~) = = 0. With this

and ~~~ = 1, E q u a t i o n  ( l 3 a )  may be rewr i t ten

I ~(p)dV = — I ~
‘ .[ptY— TU.V (pU)—AV (pa )JdS (13b)

6
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The last two terms of Equation (l3b), dotted by i~, represent

a decrease of the frictionless flow mass flux ~
.(pU) crossing

dS due both to a shift of the las t two average collision points

by the frictionless flow velocity and to a molecular mass

flux gradient. In the last term of Equation (l3b), the A may

be replaced by viscosity, p = paA . With this and the diver-

gence theorem , Equation (l3b) becomes

I ~~(p)+V .(pU)—V .fT1J.V (pU)+pVln (pa)]}dV = 0 (14)

Because the volume is ar bitrary, the integrand of Equation

(14) must be zero. Thus, the continuity equation become s

~
(p) + V .(pU) = V .[TU .V(pU )+pVln (pa)] (15)

where the terms on the right provide corrections to the

macroscopic frictionless flow continuity equation due both to

a shif t of the las t two avera ge collision sur faces , ~‘aused by

the flow velocity, and to the molecular mass transpor t

gradient.

Substitute Equations (9a), (9b), (lib) and (12) in Equa—

tion (2) to form the momen tum per turbation

S

I
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I [~~(pU)—pVF)dV

= — I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—T (tJ+afl). V( P’ (U+an)(U+ai~)1

+T(an—rJ).v[ p II
( U_ a~~~~) ( U_ a ~~~~) j  }dS

= — f  n .Ip UU+pI—TU.V(pUU+pI)

—An ’V (panU+paU~ )JdS (16)

Using the d iver gence theorem

f  [3 (pU)+V.(p )+Vp—pVF—V .[TU.V(p~ii~)]

—V (-t ti.Vp)IdV = I F .[Ai~.V (c.a~iO+paU~ )]dS (17)

A

The surface integral in Equation (17) contains the symme tric

dyadic (pa~~3+pat~~) whose value depends on the orientation of 
S

ri. Carrying out the differentiation for F~.v, the surface

integral integrand becomes

n.(An .V(panu+paun)J

n .X {(n En .  V( p a U ) ]  + t (  pao

+(i~.V(paU)J~~+(pati)t)} (18)

8
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The dyadic on the right side of Equation (18) is also

symmetric. Using ii.i~ = 1 and ii.E = 0, this may be rewri tten

~j. [Xn.V ( panU+paUn)]

= n.A[V(pau)+[n.V (paU)ri+(paU)t] (19)

The dyad ic on the right side of Equation (19) must be sym-

metric to preserve equilibrium of the volume element,4 thus

the last terms must be replaced by [V(paU)J ~~
, which is the

conjugate of V(paU). The normal component ~.[~i.V(paU)J is

found to be equal to the normal component n.(n’[V(pau)]c) by

merely expand inq; thus it is the tangential component of

which must be equal to i~.(pafi)~E to preserve the

equilibrium of the volume element. Other authors5 showed

the requirement for a symmetric dyadi c using the principle

of angular momen tum conserva tion , so that this view could

be used ins tead of preserv ing equilibrium of the volume

elemen t. Perhaps the opposite point of view would be to

assume tha t a volume elemen t is not in equili brium and has

started to spin up. Then , in a microsecond , the molecules

within the volume element would flux bac k and for th about a

thousand time s , transpor ting tangential momentum which opposes

the spin to reestablish the volume element’s equilibrium .

I

9
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In any case, the dyadic must be symmetric. With Equation (19)

and the divergence theorem , Equation (17) becomes

I ~~( pU)+V.( piMi)+Vp—p2F—V.[TU.V( pii~ )J

V(TtiaVp)
~
V1 (XV (paU)+A[V(paU)]c)}dV = 0 (20)

Because the volume is ar bitrary, the integrand of Equation

(20) must be zero. Using p, the momentum equation becomes

~( pU) + V•(pUU) + Vp — pVF = V.[vU.V (pt~ii)J

+ V (rii.Vp) + V. [(P/pa )~ V(paU)+[V(paU)J c}] (21)

where the first two terms on the r ight, involving r , provide

a correction due to a shift of the last average collision

surfaces by the flow velocity. The last terms provide a

correction due to the molecular momentum transport gradient.

The dyadic V (paU) and its conjugate may be expanded to show

the correc tion that is due stric tly to v iscosi ty and velocity

gradient

(p/ pa){V(paU)+[V(paU)]
~~
}

uIvU+ (vii~~1 + p [(Vlnpa )U+U(Vlnpa)] (22)

‘I

10 
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Using Equations (10), (llb), and (12) in Equation (3)

to form the energy perturbation

I {a(pe+pU .U/2—pF)+V .[(pe+pti.U/2—pF + p)’U]—pq}dV

= I n’~ T(U+an).VEp ’(c~T+u.U/2—F)(U+an)1

+1 ( U—an) .VE p ” ( c~T+U. 13/2—F) ( U—an)] }dS

= I ~ .{TU.V [P(c~T+U.U/2—F)iJ]

+X V [~ a(c~T+U.U/2—F)]}dS (23)

Wi th the d iver gence theorem , Equation (23) may be written

as a volume integral equal to zero , and , since the volume is

arbitrary, the integrand is zero. Then , using A = p/(pa),

the energy equation may be wri tten

a (pIc ~
T+U.U/2—F1 ) + V.[p(c~T+U.U/2—F)U] — pq

= V.(TU.V[P(c~T+U’U/2—F)r3]+uV(C~T+U.U/2 —F)

+lL (c~T+U.U/2—F)vEln(Pa)]} (24)

DISCUSSION

The significant result obtained from this development

is the continui ty equation with molecular transport correc-

tion terms , Equation (15). These terms correct the macro—

scopic frictionless flow continuity equation and are the same

order of magnitude as the correction terms for the momentum

11 
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and energy equations. It should also be noted that the

momentum and ener gy equations , given by Equations (21) and
I

(24), provide new correction terms due to a shift of the

molecular collision sur faces , on both sides of the surface

element dS, by the flow velocity . When viewed in the surface

integrals , all of these correc tion terms may be physically

inter pre ted as per turbations to the locally Maxwellian mole-

cular velocity distribution function. The perturbations re-

sult from the collision surfaces being situated on both sides

of the surface element dS , rather than coincident with it.

Two simple examples will illustrate the na ture of these

correc tion terms . First , consider a thermally insulated

container of gas at res t, wi th uniform pres sure , without body

forces , and with a thermally insulated partition so that the

two compartments of the container are at different tempera—

tures. Now, if the par tition is removed , there w ill be un-

steady effec ts due to molecular motion wh ich ini tially trans-

por t mass and energy across the surface elements where the

partition was located . For the two compartments , let T2 < T1,

and because the pressures are equal P1 < P2 The net mass

f lux from 1 to 2 will be

(p1 a1—p2a2)/2

“[P/SQR(2RT)] [l/SQR (T1)—l/SQR(T2)) (25)

12



The net energy flux from 1 to 2 will be

(~~1a1c~T1—~ 2a2c~T2)/2

= EPc~/SQR(2Rlr)]ESQR(Tj)—SQR(T2)] (26)

Thus , near the surface element there will be a time ra te of

change of density ~( p) even though the macroscopic flow

velocity is zero. This effect is included in Equation (15).

Since these two net effec ts occur at the molecular level

wi thin a few mean free paths , a net pressure gradient w ill —

be established acro ss the surf ace element which star ts to

drive the momentum equation . Of course the system without

the par tition wil l eventually reach a new state of thermo-

dynamic equilibrium .

As a second example, consider the flow near the center

of a long the’~mally insulated pipe filled wi th gas , without

body forces , which is conducting heat in a steady state con—

dition. Taking Equation (15) back to a surface integral , the

macroscop ic mass flux will be

p U = -rU•V(pU) + pVln(pa ) (27)

which is exac tly balanced by the small microscopic mass flux

in the —U direction.

13
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Taking Equation (24) back to a surface integral, the energy

flux vec tor ~ will be

= P(c~T+U’U/2)U - TU.V [P(c~T+U.U/2)U1

— 1JV (C~T+U U/2) — Ii(c~T+U.U/2)Vln (Pa) (28)

This equation shows that the energy is transported macro—

scopically by pU as well as microscopically by the molecular

activity. Using Equation (27), the energy flux vector may

be writ ten

Q = — ErrJ .V (P (J)+uVln(Pa)J [TU.V (c~T+U’U/2)J

— ~V (c~T+U.U/2) (29)

The principal term contributing to the ener gy flux vec tor in

Equation (29) is —PV (c~T). If the body force potential F

were not zero , the energy flux vec tor ~ would include this

effect from Equation (24). Thus, if a long pipe were used

to ex perimentally determine the coefficient of thermal con-

ductivity, the resul t would be affec ted slightly by the

orien tation of the pipe to the potential gradient. In this

case , the approxima te net energy flux wou ld be

_Pi~.V (c~T~F) (30)

The correction terms involving TU in Equations (15),

(21), and (24) will become significant in high—speed flows,

14
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such as found in ballistic reentry and shock wave

calculations. This occurs when ti approaches the same order

of magnitude or is grea ter than a , so that TU is several or-

ders of magni tude larger than in the two examples given above .

CONCLUSIONS

The governing equations for viscous compressible flow

have been derived by using a simple molecular transpor t model

to form an approxima te per turbation of the fric tionless flow

equation. The molecular transport correction terms in the

continuity equation are of the same order of magnitude as the

correc tion terms in the momentum and energy equations. It

appears that all of these correction terms should be con-

sidered initially for the proper analysis of d iverse flow

processes.
S
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